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A method is presented for analytic description of the t rans fe r  functions of a controlled object 
during induction heating in a coil of finite length. If the tempera ture  at the exit f rom the coil 
differs slightly f rom the quasis ta t ionary value in the coordinates of the coil, one can use lin- 
ear  approximations (superpositions) and separate the var iables  for time and coordinates.  

Metallurgy and machine construction make considerable use of fast technological processes of hot 
rolling, heat treatment, and welding via induction heating and with built-in systems for control of the tem- 
perature by means of photoelectric temperature transducers. In induction heating, physical features of the 
method allow the heating rate and metal feed rate to be many times those for heating by gas or electric 
ovens. The surface temperature of the component at the exit from the coils can be adjusted via the power 
supply to the coil, the speed of the component, or via the two together. Practical use is found mostly for 
systems where the coil power is controlled, and instability in the feed rate is considered as additional per- 
turbation affecting the controlled object. 

In calculations on such systems one needs a mathematical description of the controlled object, i.e., 
in terms of transfer functions relating the temperature of the component at the exit from the coil to the 
basic control and perturbing factors. 

Here we consider the transfer functions with respect to the control (coil power) for high-speed induc- 
tion heating, when a heat transfer along the direction of motion of the metal may be neglected.* The syn- 
thesis problem for the automatic control system is then usually one of stabilizing the heating relative to 
some quasistationary state (in the fixed coordinates of the coil) for small temperature deviations, so one 
can use linear approximations in deducing the transfer functions, and this allows separation of the time 
and coordinate variables. 

1. Figure 1 shows the half-space of the heated material, which is bounded by the surface x = 0, on 
which the lines show the turns of the coil. First we consider heating by a coil of unlimited length with a 
known distribution of the heat sources w(x, y). The temperature distribution in the material is described 
by a two-dimensional Fourier equation: 

eCa. ~ \~-(x ~ + av ~ ] + w(x, v, "0, (1) 

where ,5 is temperature .  

We assume that we have a solution for (1) for certain boundary and initial conditions in the complex 
form 

where 

~(~, v, s) = * ( x ,  v, s)-p~m(s), (2) 

iS the electromagnetic  power per unit length of coil. 

*This res t r ic t ion is not essential  for the method descr ibed here.  
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Fig. 1. Zonal heating of a half- 
space. 
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Fig. 2. Structural scheme for con-  
trotted object (n = 2). 

The solution to (1) may be put as a Duhamel integral (convolution integral) in the region of the real  
variable for  an a rb i t ra r i ly  varying Pem(r) : 

t 

d l~ ~(x, y, t) = d i  
0 

where 

y, ~) ~m( t - -  ~) d~, . (41 

We also assume that the par t  moves along the z axis with a velocity v, while the coil has a res t r ic ted  
length l (Fig. 1). 

We neglect changes in the hea t - t r ans fe r  coefficient and the thermophysica[  pa ramete r s  of the com-  
ponent under the coil in the direction of motion, as well as edge effects at the boundaries z = :e(//2), and 
then the temperature  at the exit f rom the coil (z = +(//2)) may be put as 

d ~h(x, g, x)-Pern(l--'OdT,, (5) %ut ix, y, 0 = Z  
L--'go 

where T O = l/v iS the time spent by the workpiece in the coil. 

Operational t ransformat ion of (5) for $out(X, y, 0) = 0 gives 

"out(x,y,s)=s[ cP(x,g,s, 1][l--exp(--~o)]Pen~S), (6, 

whence the t ransfer  function of the controlled object is found in accordance with the coil pa rame te r s  as 

W~ "~ (s) -=kis(1)(x' g,s)[ 1 - e x p  (-sT~ ] s T o  , (7) 

where P is the power in the coil, k i = VelT0//,and Vel is the e lectr ical  efficiency of the coil. 

The main interest  attaches to the t ransfer  functions in induction heating as calculated for  the surface 
of the workpiece at x = y = 0:  

Wo (s) = ~:out (~) -- kisO(s) [ 1--exp(--sT~ ] . (8) 
p (s) S~o 

If the coil is wide enough and the power is uniformly distributed in the direction of the y axis, the 
function ~ ( s ) m a y  be derived f rom the solution of the one-dimensional  Four i e r  equation; such solutions 
have been given [1] for  various boundary conditions and with an exponential distribution of the heat sources  
w = w0exp(-yx),  where T is the rec iprocal  of the half-depth of penetration for  the electromagnetic  wave 
with purely  surface heating. It was f i rs t  [1] shown that ,I,(s) may be represented via polynomials that are 
functions of 4-s; s imi lar  representat ions  have been used [2, 3] for  the t ransfer  functions on heating in coils  
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of unlimited length for several other eharaetertstic cases. In particular, solutions have been obtained [3] 
for heating on cylindrical workpieees of radius IR. Then the forms used in (7) and (8) for the transfer func- 
tion enable one to use standard solutions of the one-dimensional or two-dimensional equations for thermal 

conduction. 

We supplement solutions of the type of (2) given in [1-3] by solutions for heating of a sheet of thickness 
5 comparable with the penetration depth of the electromagnetic wave, when the temperature difference over 
the cross section of the workpiece is negligible and one needs to take into account only the surface tempera- 
ture distribution. 

Then the energy balance for deviations of the local temperature under the coil is described by 

0~ 
5pc ~ -  = pel(~) - -  Pl (x), (9) 

whe re  Pl r e p r e s e n t s  the l o s se s ,  whieh we r e p r e s e n t  v ia  Newton ' s  law: 

ppl:= a@. (10) 

We apply opera t iona l  t r a n s f o r m a t i o n s  to (9) with (10) to get  

O 1 (s) -- ~ (s) = k, (11) 
Pem(S) 1 + sT ' 

where  k 1 = 1/~ and T = 5pe/ce. 

F o r  a t h e r m a l l y  insula ted workp ieee  with o~ = 0 we have 

~.~ (s) = kjs , (12) 

whe re  k 2 = 1/Spc; subst i tu t ion of (12) into (8) g ives  

Wo(s)= ko [ 1--exp(--s%) I s . c o ,  (13) 

w h e r e  k 0 = kikx/b. 

See [4] f o r  the s tabi l i ty  range  of an au tomat ic  s y s t e m  with the con t ro l l ed  objeet  of (13). 

2. The conc lus ions  of sec t ion  1 a re  based  on the a s sumpt ion  of a un i fo rm dis t r ibut ion  of the power  
in the coil  a long the d i rec t ion  of motion (the z axis), which is t rue only in a r e s t r i c t e d  n u m b e r  of c a s e s  
whe re  the heat ing is p roduced  in a s e r i e s  of heat ing units  o r  in eyc l ie  heat ing of workp ieces ,  these  being 
such that the t e m p e r a t u r e  d i f fe rence  between the intake and outlet  f r o m  a eotl is not such as to p roduce  sub-  
s tant ia l  changes  in the t h e r m o p h y s i e a l  p a r a m e t e r s  of the workp iece .  

If it is n e c e s s a r y  to i n c o r p o r a t e  the power  d i s t r ibu t ion  in the coil  along the z axis, the coil  + w o r k -  
p iece  may  be r e p r e s e n t e d  as a s e r i e s  of zones ,  within each of which the a s sumpt ion  about a un i fo rm power  
d i s t r ibu t ion  is r e a s o n a b l y  jus t i f ied .  

F igu re  2 shows the s t r u c t u r a l  d i a g r a m  fo r  a con t ro l l ed  object  eons i s t tng  of two zones ,  whe re  k ~  and 
k M are  the coef f i c ien t s  for  the power  d i s t r ibu t ion  (k~  + k M = 1); the t r a n s f e r  funct ion fo r  such an objec t  
takes  the f o r m  

where 

W o (s) ~ W 0 (s) k~ + W o (s) k~ exp (--  s,~), 

W,o (s) =: k,i sag, (s) I 1 - -  exp(--s '~) ] ; 
s~; 

Wo(s)~k'~s~,,(s)[ 1 --exp(--S'~o) ] �9 
7, 7 

S T  o 

l ' l" 

V V 

If the re  a re  n zones ,  whe re  n -- 2, 3 . . . . .  i, then 

2 i 

(14) 
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This division of the object into zones may be desirable in deriving information from transducers dis- 
tributed along the heated workpiece. 

N O T A T I O N  

b is the inductor width, m; 
l is the inductor length, m; 
v is the velocity, m/sec; 
p is the density, kg/m3; 
c is the specific heat capacity, J /kg.  deg; 

is the thermal conductivity, W/re. deg; 
is the heat t ransfer  coefficient, W/m 2. deg; 

T iS the current  time; sec; 
t is the time, sec; 
w is the heat source density, W/m3; 
_Peru is the power W/m2; 
Pem is the electromagnetic power per unit length of inductor; 
P is the inductor power; 
7 is the depth of current  penetration, m-i; 
Pl is the loss, W/m 2. 
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